Covariate-adjusted matrix visualization via correlation decompositionHan-Ming Wu1,Yin-Jing Tien2, Meng-Ru Ho3, 4, 5, Hai-Gwo Hwu6, Wen-chang Lin5, Mi-Hua Tao5, and Chun-Houh Chen2,*
|
The Fisher's iris data¡@ 1. WABA and z-score significant map¡@ ¡@ (1.1) Import the built-in Fisher's iris data.
¡@ (1.2) Click the icon for covariate adjustment (WABA analysis).
¡@ (1.3) In the Decomposition of Correlation Matrices Dialog Window, specify the covariate to be adjusted.
¡@ (1.5) The the WABA Window, one can reorder the rows and columns of the specified matrix using HCT or R2E.
¡@ ¡@ 2. Covariate-adjusted MV¡@ (2.1) Click the icon for GAP analysis.¡@ ¡@ ¡@ (2.2) In the Generalized Association Plots Dialog Window, specify the data type, the proximity measures and the covariate adjustment option.¡@ ¡@ ¡@ (2.3) In the Generalized Association Plots Window, use the control panel to zoom and coloring.
¡@ (2.4) Perform the average-linkage clustering for rows and ellipse seriation for columns. ¡@ (2.5) One can do the GAP analysis for the residual data. ¡@ ¡@ (2.6) One can also do the GAP analysis for the fitted data.
¡@ ¡@ |
Last Update: 2010/12/22, hmwu@mail.tku.edu.tw |