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Abstract

GAP is a Java-designed exploratory data analysis (EDA) software for matrix visual-
ization (MV) and clustering of high-dimensional data sets. It provides direct visual
perception for exploring structure of a given data matrix and its corresponding prox-
imity matrices, for variables and subjects. Various matrix permutation algorithms
and clustering methods with validation indices are implemented for extracting em-
bedded information. GAP has a friendly graphical user interface for easy handling
of data and proximity matrices. It is more powerful and effective than conventional
graphical methods when dimension reduction techniques fail or when data is of
ordinal, binary, and nominal type.
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1 Introduction

Graphical exploration is a preliminary yet essential step in exploratory data
analysis and statistical modeling. The boxplot, histogram and scatterplot have
served as major tools in the statistics and machine learning communities for
more than 30 years. Quite often, these traditional graphical techniques are
equipped with various dimension reduction methods and computer-aided in-
teractive functionalities. Although they are useful for exploring data structure,
they often lose effectiveness when it comes to visual exploration of informa-
tion structure embedded in high dimensional data sets. With striking advances
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Fig. 1. Architecture of the GAP analysis procedures.

in computing, communication, and high-throughput biomedical instruments
nowadays, data sets of relatively large numbers of variables or large sample
sizes are generated with more complex structures. As a consequence, more
sophisticated visualization techniques and environments that support the ef-
ficient, effective and practical exploration of high dimensional data sets are
needed.

Bertin (1967) proposed the concept of matrix visualization as a reorderable
matrix for systematically presenting data structures and relationships. Over
the past few decades, much attention has been devoted to visualizing the raw
data matrix (subjects by variables), while little work has been carried out
on visualizing the corresponding proximity matrices (subjects by subjects,
variables by variables). A detailed review of MV techniques can be found in
Wu, Tzeng and Chen (2007). Regarding implementation, a number of MV-
related software analogs are available, particularly in the field of bioinformatics
for studying microarray gene expression data. They were developed either
for exploring the raw data matrix only (color histogram of Wegman (1990);
data image of Minnotte and West (1998); Treeview of Eisen et al. (1998)) or
proximity matrices only (Ling, 1973; Murdoch and Chow, 1996; corrgrams of
Friendly (2002)). Chen (1996, 1999, and 2002) integrated visualization for
the raw data matrix with two proximity matrices (for variables and samples)
into the framework of generalized association plots (GAP). The term, matrix
visualization, is therefore referred to as a graphical technique for visualizing
and exploring, simultaneously, the associations of subjects, variables and their
interactions, without dimension reduction. This color-based representation of
re-ordered data matrices tries to display tabular quantities and relationships
in a natural and intuitive way for gaining valuable insights into the underlying
information.

In this paper, we describe the design and features of a novel exploratory data
analysis software package, GAP, for matrix visualization and clustering. GAP is
written in Java and implements matrix visualization and various clustering al-
gorithms (e.g., hierarchical clustering, k-means, rank-two elliptical seriation)
for interactive exploration of data matrices. Figure 1 depicts the design ar-
chitecture of the standard GAP analysis procedures. Firstly, two proximity
matrices for rows and columns of an input table of data (could be one of
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continuous, binary, ordinal or nominal data types) are calculated using user-
specified proximity measures. Three matrix maps are then constructed through
a suitable color projection. After applying some clustering or seriation algo-
rithms for rows and columns if necessary, the patterns and clusters are found
and validated further with different characteristics of criteria. In addition, a
wide-range of algorithms and functionalities are provided and operated ei-
ther directly on the original data matrices or on the two proximity matrices
for more comprehensive data exploration. Our design goals of the develop-
ment were driven by (1) ease of use; (2) flexibility for dealing with different
data types; (3) interactive data exploration; (4) platform independence; and
(5) state-of-the-art graphing and clustering algorithms. The users have the
capability of direct visual mining of the data matrix with the two proximity
matrices. GAP, equipped with modern computing power and display, has great
potential for visually exploring structure that underlies massive and complex
data sets and is intended as a routine EDA tool for general purpose data anal-
ysis. To our knowledge, this package is the first publicly available GUI software
for implementation of integrated matrix visualization and cluster analysis.

The paper is structured as follows. Section 2 introduces the main procedures
of matrix visualization under the framework of generalized association plots,
including the system architecture and designed objects. The permutation and
clustering algorithms and the cluster validation indices are given in Section
3. Section 4 describes some unique features and extensions. Some modules
which extend MV techniques for statistical data analysis including the spe-
cial application and implementation of MV techniques for visualizing cDNA
Microarrays are presented in Section 5. We conclude the article with some
perspectives on MV techniques in Section 6.

2 Main procedures of matrix visualization

We summarize the main steps of matrix visualization in terms of calculation,
presentation and permutation. The developed visualization method will be
presented following the three aspects of Keim (2001): (1) the data to be visu-
alized; (2) the visualization technique; and (3) the interaction technique. For
illustration purposes, a subset of the Harvard lung cancer microarray data set
B described in Bhattacharjee et al. (2001), is employed. The subset consists of
30 randomly sampled adenocarcinomas (AD) patients (rows) with 14 marker
genes (columns). The samples come with one discrete covariate, gender, and
one continuous covariate, age. The 14 marker genes have been clustered in
three functional categories by Bhattacharjee et al. (2001). In this paper, we
only demonstrate the analysis procedures for the continuous type raw data
matrix in GAP. The same procedures can be applied to binary, ordinal or
nominal data types.
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Table 1
Data objects for GAP matrix visualization.

Matrix Object Symbol Dimension Description

Data gap Z = {zij} n× p a tabular data set

Proximity gaprow R = {rij} n× n proximity for rows (subjects)

gapcol C = {cij} p× p proximity for columns (variables)

Covariate gapYd Yd = {yd
ij} n× qd discrete covariates for rows

gapYc Yc = {yc
ij} n× qc continuous covariates for rows

gapXd Xd = {xd
ij} md × p discrete covariates for columns

gapXc Xc = {xc
ij} mc × p continuous covariates for columns

2.1 Calculation of proximity matrices

2.1.1 The input data table and missing values imputation

The first step of a GAP analysis is the calculation of two proximity matrices,
R and C, for n rows (subjects) and p columns (variables) of a given data
matrix Z with the user-selected similarity (or dissimilarity) measures. Quite
often, the collected data may come with additional qualitative or quantitative
information, which we refer to as discrete or continuous covariates. We de-
note Xd, Xc, Yd and Yc as discrete covariates and continuous covariates for
columns and rows, respectively. Since the n and p are treated symmetrically
in GAP, we will denote D as a general proximity matrix for representing either
R or C. Table 1 lists a short description for these seven data matrices to be
visualized and manipulated. All the data matrices are stored in a single input
file with ASCII format.

Since the scale of the data under study significantly impacts the effectiveness
of visualization, a pre-transformation is in general needed to obtain a compar-
ative scale for both numerical and visual considerations. For example, a log
transformation reduces outlier effects and enhances overall comprehension of
visualization. Some basic mathematical transformations such as log, power,
centering are implemented in GAP.

Another processing issue for the input data is missing values. Missing val-
ues are allowed and can be coded by the user’s preference such as “NA” or
“NULL”. For further statistical modeling of data containing missing values,
GAP includes several imputation methods for continuous type data such as row
or column averages, weighted k-nearest neighbors, and singular value decom-
position (SVD) (Troyanskaya et al., 2001). Besides being capable of handling
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Table 2
Input data type and the corresponding proximity measures provided by GAP.

Data type Proximity measures

Continuous
Covariance, Euclidean distance (L2), Kendall’s τ , Pearson’s
correlation coefficient r, Spearman’s rank, City-block (L1),
Absolute(r), Uncentered r, Absolute(uncentered r).

Binary Hamman, Jaccard, Phi, Rao, Rogers, Simple match, Sneath,
Yule.

Ordinal Kendall’s τb, Kendall-Stuart’s τc, Goodman-Kruskal’s γ,
Somers’s d, Wilson’s e.

Nominal Sakoda’s contingency coefficient, Goodman-Kruskal τ , Co-
hen’s κ (I=J), Simple match.

a raw data matrix of continuous, binary, ordinal or nominal type, GAP admits
direct input of a similarity or distance matrix prepared by the user.

2.1.2 Proximity measures for variables and subjects.

The associations among rows (subjects) and columns (variables) are con-
structed through the computation of similarity or dissimilarity measures, such
as Pearson’s correlation coefficient or Euclidean distance. The choice of prox-
imity measure strongly affects association patterns for variables and subjects
directly, and the interaction structure in the data matrix indirectly. Table
2 lists some commonly adopted association measures for continuous, binary,
nominal and ordinal scales of data. For the lung cancer example, Pearson’s cor-
relation is calculated for genes and Euclidean distance for patients. For poten-
tial nonlinear relationship, nonlinear geodesic distances (see Section 5.2) such
as Isomap (Tenenbaum et al. (2000)) can be utilized. On the other hand, for
data with missing values, proximities are calculated using pairwise (columns
or rows) complete observations.

2.2 Presentation of the data matrices

Seven aforementioned numerical matrix objects are then projected through
suitable color spectra as matrix maps, where each numerical entry is repre-
sented by a color dot. This is the most fundamental step in matrix visualiza-
tion. The graphical layout of each data object is arranged and integrated into
a single plot as shown in Figure 2. Dendrograms for rows and columns are
shown as additional objects when hierarchical clustering methods are adopted
(see Section 2.3.2 for a detailed description). This design enables the overall
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visual comprehension of all related information in a single window. Java 2D is
the major graphical device for designing the viewer, gapDisplay, for tabular
data matrices.

Z R

C
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Tree

Tree

Fig. 2. Graphical layout of data objects in GAP matrix visualization.

2.2.1 Color spectra

The selection of an appropriate color spectrum is usually a subjective process
in data and information visualization. The principle in selecting a suitable
color spectrum is to ideally project the numerical properties of the data into a
corresponding meaningful visual perception. GAP provides several commonly
used color spectra and a dialog for designing the user-defined color spectra.
Table 3 summarizes characteristics of the available color spectra in GAP.

In an MV plot, a missing value can be simply displayed at the correspond-
ing position (row and column) with a color that can be easily distinguished
from the color spectrum of the numerical values. With appropriate permuta-
tions for rows and columns, the corresponding variable/sample combinations
of missing structure can be visually accessed. The GAP users have a simple
yet informative visual perception of the missing mechanism (random or not,
ignorable or nonignorable) of the data (variables).

2.2.2 Displaying conditions of the raw data map

Changing the display of colors is similar to select transformations for numerical
values. The default display condition in GAP is the range matrix condition,
where the whole color spectrum is used to represent the complete range of
values in the raw data matrix. For a bidirectional color spectrum (green-black-
red for gene expression profiling, blue-white-red for correlation coefficients),
the centered matrix condition enforces the color spectrum to be symmetric
around the baseline numeric value (1:1 for log2 ratio gene expression, zero
for correlation coefficient), see Figure 3 (a). On occasion, one might want
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Table 3
Color schemes for data objects.

Spectrum type Property Name Spectrum Suitable data objects

Unidirectional spectral color rainbow-130 sequential Z, R, C, Yc,

single-hue progression gray-256 and Xc.

Bidirectional diverge from a pivot expression-38 diverging Z (gene expression),

point correlation-200 diverging R, C (correlation,

covariance).

Nominal depict category ra- category-16 nominal Z, Yd, Xd.

other than continuity

Binary almost all color spectra can be used to color code binary data matrix or

proximity matrix.

2- or 3-hue the user can create arbitrary linear color spectrum by specifying starting, midpoint,

diverging and ending color triplet (r,g,b).

to down-weight the effects of extreme values in the data set, and the use of
ranks as a replacement for numerical values is one possibility. This is termed
the rank matrix condition. The matrix condition can be easily converted to
row or column conditions by a mouse click for contrasting individual variable
distributions or subject profiles.

2.3 Permutation of data matrices

The structures embedded in the raw data map and the two proximity maps can
be extracted only with some suitable permutations for the matrices. There-
fore, it is necessary to permute the matrices such that subjects with similar
profiles are placed in neighboring rows and variables with common distribu-
tion patterns in neighboring columns. We have implemented several seriation
algorithms.

2.3.1 Ellipse ordering

GAP features the elliptical seriation algorithm (Chen, 2002), R2E, which uti-
lizes the property of a converging sequence of iteratively formed correlation
matrices. When the sequence reaches an iteration with numerical rank of the
correlation matrix equal to two, the p objects fall on the surface of a two-
dimensional ellipsoid (ellipse) and have unique relative positions on the ellipse.
Elliptical seriation is very effective for identifying global clustering patterns
and smooth transitional profiles (Tien et al., 2008) which optimize the Robin-
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Fig. 3. The standard multi-window operating environment of GAP. This figure
demonstrates the GAP GUI using a subset of Dataset B from Harvard Lung Cancer
Dataset (Bhattacharjee et al., 2001). There are 30 randomly selected patients (rows)
of lung adenocarcinoma (AD) with 14 marker genes (columns). (a) The unsorted
raw data map and two proximity maps with clinical records on gender and age,
on the left. (b) The sorted Euclidean distance matrix for patients. (c) The dendro-
gram for genes with a user-selected partition. (d) The resulting clusters for patients.
(e) The output window. (f) The restricted display for patient Euclidean distance
matrix. (g) The sectional display for the genes correlation matrix. (h) The gene
sediment display for the expression profile matrix. (i) The mean sufficient display
for (c). (j) The GAP converging procedure panel. (k) The zooming window. (l) The
control panel. (m) Manual flip of an intermediate node of dendrogram.

son criterion (Robinson, 1951) (see Section 3.1 for a detailed description). This
is a unique feature of GAP. R2E can be applied to any given proximity matrix
D, be it correlation, covariance, Euclidean distance, or other proximity matrix
for objects. For example, the Euclidean distance for patients in the lung can-
cer data is sorted by the relative ellipse shown in Figure 3(b). The rank-two
ellipse seriation for obtaining one-dimensional ordering is as follows. Let φ be
the Pearson’s correlation operator and {R(k), k = 1, 2, · · ·} be the sequence of
sample Pearson’s correlation matrices.
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Algorithm of R2E:

(1) Initial: set the initial ordering of p objects as {o1, o2, · · · , op} and R(0) =
D.

(2) Iterative process: R(k)(D) = φ(R(k−1)(D)), k = 1, 2, · · ·.
(3) Stopping criterion: stop at the κ-th iteration for which the numerical rank

of R(κ)(D) equals two. (All p column/row vectors of R(κ)(D) fall on an
ellipse and have unique relative positions on it.)

(4) Splitting: find a cut c such that two successive objects have the largest
gap.
• For each object, oi in R(κ)(D), compute its angle relative to the origin

as ai.
• Sort the angles to get the relative positions of p objects on the el-

lipse, {a(i), i = 1, · · · , p}. The corresponding sorted objects are {o(i), i =
1, · · · , p}.

• A cut c is obtained with the largest gap between two successive objects

c = arg max
i
{a(i+1) − a(i)}.

(5) Reordering: the ellipse ordering is {o(c+1), o(c+2), · · · , o(p), o(1), · · · , o(c)}.

Note that the ordering of R2E is successive, that means the maps can be moved
back and forth in pursuing possible better visualizations. This algorithm has
also been implemented in R (R Development Core Team, 2005) in the seriation
package by Hahsler, Hornik and Buchta (2008).

2.3.2 Tree seriation and flipping mechanism

Agglomerative hierarchical clustering is the most popular permutation algo-
rithm for gene expression profiles. One sorts columns and rows of an expression
profile matrix using the relative orders of the leaves (terminal nodes) of the
corresponding dendrograms constructed for genes and for arrays. One critical
but often neglected issue using the leaves of the dendrogram in sorting the
rows/columns of a raw data matrix is the flipping of the intermediate nodes.
The n− 1 intermediate nodes for a dendrogram of n objects (subjects or vari-
ables) can be flipped independently resulting in 2n−1 different permutations
for the n objects using identical proximity matrix and tree linkage methods.
GAP comes with two internal methods and two external methods to guide
the flipping mechanism of the intermediate nodes for the single-, complete-,
average- and centroid-linkage tree methods.

The first internal flipping mechanism, the uncle approach, is implemented to
flip the intermediate node n(·) such that the distance (in the sense of average-
linkage) between its left daughter node to its brother node is larger than the
distance between its right daughter node to its brother node. The following
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Fig. 4. Intermediate node flipping mechanism of a hierarchical clustering tree.

are some uncle flipping examples using a dendrogram of six objects shown in
Figure 4.

• Flip the node n(−2), if dist({o1}, n(−3)) ≤ dist({o2}, n(−3)).
• Flip the node n(−3), if dist({o3}, n(−2)) ≤ dist({o4}, n(−2)).
• Flip the node n(−1), if dist({o5}, n(−4)) ≤ dist({o6}, n(−4)).

Figure 3(c) shows the average-linkage tree with the uncle flipping for genes.
We see that the permutation result matches well the functional categories of
genes.

Another internal flipping mechanism is the grandpa approach. Assume the
intermediate node n(·) to be considered for flipping stemmed from the left
branches of the root node (denoted by Ltree). We shall flip the node such that
the distance between its left daughter node to the right branches of the root
node (denoted by Rtree) is larger than the distance between its right daughter
node to Rtree. Here are some grandpa flipping examples.

• Flip the node n(−2), if dist({o1}, {Rtree}) ≤ dist({o2}, Rtree), where Rtree =
n(−1).

• Flip the node n(−3), if dist({o3}, {Rtree}) ≤ dist({o4}, Rtree), where Rtree =
n(−1).

• Flip the node n(−1), if dist({o5}, {Ltree}) ≤ dist({o6}, Ltree), where Ltree =
n(−4).

Another way for guiding the intermediate node flipping mechanism is through
the guidance of some external referencing list which can be imported by the
user. The external reference methods make the tree seriation result as close to
the external reference as possible. For example, a hierarchical clustering den-
drogram guided by the R2E seriation will simultaneously preserve coherent
local clusters as well as smooth global grouping structure of the data. Com-
parison of various seriation methods for matrix visualization can be found in
Tien et al., (2008).
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2.3.3 Other sorting algorithms

GAP provides options to sort the data maps according to the user’s input
reference list or row/columns means. For example, a reference list can be
obtained from other clustering algorithms (e.g., DIVCLUS-T (Chavent et al.,
2007)). This flexibility strengthens the GAP environment through integrating
the users’ prior knowledge and merits of other clustering algorithms/packages.
It is also possible to reverse or randomize the ordering of the dendrograms
and data maps. This function is especially useful for interactive teaching of
hierarchical clustering tree methods.

2.4 Non-continuous data

For non-continuous data where multiple instances take the same value, conven-
tional displays suffered from overstrikes of data points representing the value
(scatterplot type displays) or overstrikes of line segments connecting values
of neighboring variables (parallel coordinate plot) (Inselberg, 1985; Wegman,
1990). On the other hand, GAP has a significant advantage over conventional
graphical displays on non-continuous data for the following reasons.

GAP directly converts every single numerical value in a data matrix into one
color dot in a data map no matter if the data is of continuous, ordinal, binary
or nominal scale. The same color spectrum, gray-256 (Table 3) for example,
can be used to represent continuous, ordinal or binary data with a suitable
partitioning scheme. Colored column-stripes in a GAP raw data map act as
stacked histograms (continuous data), or bar/pie-charts (ordinal, binary, and
nominal data) while row-bands represent profiles of samples (see Section 4.1
sediment display for more discussion). For a non-continuous variable, only
a fixed number (number of categories) of hues are used to code the whole
column-stripe with n sample dots. Areas of hues representing proportions of
numerical values can be easily assessed after suitable permutation of samples
and variables.

The problem becomes more complicated for purely nominal data. Although
all the nominal colors in the category-16 (Table 3) spectrum can be used to
represent different categories in every individual nominal variable, the com-
bination of colors/variables in the whole data map makes the GAP display
incomprehensible. The issue of color-coding for purely nominal variables will
be studied in a separate article.
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3 Cluster Analysis

Cluster analysis is defined here in a broad sense. That is, the validation in-
dices are implemented both for the ordering produced by a seriation algorithm
and the clusters made by a clustering algorithm. These indices measure the
goodness of a seriation or a clustering.

3.1 Seriation validation: anti-Robinson criteria

Proposed by Robinson (1951), a Robinson Matrix, R = [rij], is a symmetric
matrix such that rij ≤ rik if j < k < i and rij ≤ rik if i < j < k. If rows
and columns of a symmetric matrix T can be sorted such that it becomes
a Robinson matrix, we call T pre-Robinson. Three anti-Robinson loss func-
tions (Streng, 1978) are implemented for each permuted proximity matrix,
D = {dij}, for assessing the amount of deviation from a Robinson form with
distance-type proximity:

ARn=
n∑

i=1

[
∑

j<k<i

I(dij < dik) +
∑

i<j<k

I(dij > dik) ],

ARs =
n∑

i=1

[
∑

j<k<i

I(dij < dik) · |dij − dik|+
∑

i<j<k

I(dij > dik) · |dij − dik| ],

and

ARw =
n∑

i=1

[
∑

j<k<i

I(dij < dik)|j − k||dij − dik|+
∑

i<j<k

I(dij > dik)|j − k||dij − dik| ].

ARn counts only the number of anti-Robinson events in the permuted matrix;
ARs sums the absolute value of anti-Robinson deviations; ARw is a weighted
version of AR(s) penalized by the difference of column indices of the two en-
tries. In order to compare the performance of different sorting algorithms, the
generalized anti-Robinson loss function is defined as the number of deviations
from the Robinson form,

GAR(w) =
n∑

i=1

[
∑

(i−w)≤j<k<i

I(dij < dik) +
∑

i<j<k≤(i+w)

I(dij > dik) ],

where w is the window-size defining the range of summation. Window-size is
the number of columns (rows) away from the diagonal of D that we consider in
calculating the anti-Robinson events. Small w refer to criteria for considering
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only local behaviors, and larger window-sizes refer to criteria for more global
relationships between subjects. In order to have better comparison among
different seriation algorithms for small window-sizes, we define the relative
generalized anti-Robinson loss function as

RGAR(w) =

∑n
i=1[

∑
(i−w)≤j<k<i I(dij < dik) +

∑
i<j<k≤(i+w) I(dij > dik) ]

∑n
i=1[

∑
(i−w)≤j<k<i 1 +

∑
i<j<k≤(i+w) 1 ]

.

RGAR(w) ranges between 0 (no anti-Robinson events) to 1 (all anti-Robinson
events).

3.2 Cluster validation

The sorted matrix maps are generally capable of displaying the raw data struc-
ture and the association patterns among subjects and variables. The users are
usually more interested in identifying clusters in the permuted matrix maps.
One can do this using the dendrogram branching structure. Figure 3 (c) il-
lustrates one such example with a threshold to split genes into three clusters.
The user can also manually select the subtrees to make clusters. In addition,
the inspection of converging R2E-sorted correlation matrices gives a clue for
finding splitting points in the sorted raw data maps (see Section 4.2). Once
the clusters have been determined (Figure 3 (d)), GAP reports the cluster
indices in the output windows (Figure 3 (e)). The cluster validation indices
are helpful for choosing the appropriate number of clusters in the data. Four
internal validation measures are implemented for reflecting the compactness,
connectedness, and separation of the cluster partitions: connectivity (Handl
et al., 2005); the Dunn index (Dunn, 1974); within-cluster variance; and Sil-
houette width (Rousseeuw, 1987). Furthermore, when the user has an external
reference partition, the Rand index, adjusted Rand index (Rand, 1971), Jac-
card coefficient, Minikowski (Hubert and Arabie, 1985) are also available for
evaluating the degree of agreement.

4 Unique features of GAP

In the complete procedure of matrix visualization, GAP provides many unique
and interactive features to assist the users in interacting with all data objects
that are not available in other matrix visualization and hierarchical clustering
tree software.
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4.1 Extending MV displays

4.1.1 Restricted display.

Quite often outliers in the raw data or proximity matrices may exhaust the
resolution of the selected color spectrum and mask the overall visual impres-
sion. The GAP users can improve this situation by displaying ranks of the
data instead of original magnitudes, or by compressing the color spectrum for
representing only certain portions of the data range (Figure 3 (f)).

4.1.2 Sectional display.

GAP uses the sectional display to show only those numerical values that satisfy
certain criteria in the original data or proximity maps. The users may decide
to ignore the values below some threshold by not displaying corresponding
hues of color (Figure 3 (g)). One can also choose to emphasize more coherent
neighboring structure by displaying only the surrounding neighbors along the
main diagonal of a sorted distance map in a dynamic fashion.

4.1.3 Sediment display.

Another useful feature of GAP is the sediment display which can be constructed
by individually sorting each subject (variable) vector according to the ascend-
ing (descending) order of numerical magnitudes. This display contrasts the
distribution structure for all subjects (variables) simultaneously. The inter-
pretation is analogous to a side-by-side bar-chart and box-plot (Figure 3 (h)).

4.1.4 Sufficient display.

With the partitioned matrix maps, GAP provides the sufficient display (Chen,
2002) through a summary statistic (mean, median or standard deviation) for
each identified subject-subject, variable-variable and subject-variable blocks.
The three sufficient (partitioned) maps summarize the information inherent
in the data matrix and the corresponding proximity matrices (Figure 3 (i)).

4.2 Converging correlation matrices

The R2E algorithm (Chen, 2002) improves the singular value decomposition
(SVD) method by extracting the elliptical structure of the converging sequence
of iteratively formed correlation matrices using eigenvalue decomposition. The
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Fig. 5. Sorted correlation maps for the thirty subjects and 2D plots of the first
two eigenvectors for the converging sequence of correlation matrices at selected
iterations.

converging sequence of the correlation matrices gradually merges relative infor-
mation structure of the minor (3rd and beyond) eigenvectors into the leading
two vectors. At the iteration with rank two, there are only two eigenvectors left
with non-zero eigenvalues, and information is reduced to the ellipse spanned
by the first two eigenvectors. This property of the converging process serves
as two major data exploration mechanisms, one is for identifying the splitting
points of sorted proximity maps to make clusters, another is for identifying
potential outliers which do not fit well into the elliptical structure with the
first two eigenvectors. Figure 5 shows the sorted correlation maps for the
thirty subjects and 2D plots of the first two eigenvectors for the converging
sequence of correlation matrices at selected iterations. While all the correla-
tion coefficients gradually approach the two extremes of +1 and -1, the leading
two eigenvectors gradually form an elliptical structure. The GAP Procedure

panel shown in Figure 3 (j) controls the converging process, the map partition
approaches and the construction of the sufficient maps.

4.3 Manual operations

In addition to the specific tools we have just described, GAP also provides
other utilities for data navigation. For examples, the action of mouse brush-
ing/selection on the map can select subsets of the data for zooming (Figure
3 (k)) and further operations. Three parameter-sliders are designed to rescale
map resolutions in the vertical, horizontal or both directions. Together with
the operations on colors (e.g., color switch, reversion) and the extending dis-
plays, tools are collected in a panel, called the Control Panel, in (Figure 3
(l)). The dialog of finding similar patterns allows the users to input a pre-
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Table 4
Function classes of interaction technique on data objects.

Matrix
Function Description

Data Proximity Covariate
√

- - Imputation missing data imputation algorithms.
√

- - Scale scaling for raw data object display condition.
√ √ √

gapDisplay a class for viewing tabular data object.

√ √ √
Sorting sort rows and columns of data objects accord-

ing to various criteria.
√ √ √

Color functions with reverse, restricted and sectional display.

√ √ √
Zoom a zooming window, zoom in and out in verti-

cal, and horizontal directions.
√ √ √

Split splitting lines.

Table 5
Function classes of interaction technique on tree objects.

Function Description

Flip flip nodes according to the input or manually operation.

Color mouse drag to color the tree branches.

Zoom rescale dendrogram.

Select mouse click to select subtree.

specified pattern for sorting the rows of the data matrix according their simi-
larities (distance or correlation) to the input pattern.

For interacting with the dendrogram, the users can select subtrees of a den-
drogram by a mouse click. Moreover, GAP allows the users to partition the
dendrogram by a mouse drag (Figure 3 (c)), and manually flip any intermedi-
ate node of the dendrogram by a mouse click (Figure 3 (m)). These are very
useful functions for educational purposes.

During the visualization process, the permuted numeric data matrices and
images (matrix maps, dendrograms) can be exported in several common file
formats (jpg, bmp, png, eps) for further manipulation. Table 4 and 5 lists
some Java classes of interaction techniques on data and dendrogram objects
for matrix visualization.
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5 Modules

Some statistical data analysis tools such as the K-means (Hartigan and Wong,
1979) clustering and principal components analysis (PCA) have been imple-
mented in GAP while the following functionalities are still in their implemen-
tation and testing stages.

5.1 Covariates adjustment

In addition to the design matrix for data analysis the users may as well collect
covariates such as gender, age or phase of cell cycle that may have some ef-
fects on an MV visual pattern analysis. Covariate adjustment has to be taken
into consideration in order to reveal the masked visual patterns. We are incor-
porating the within and between analysis (WABA) (Dansereau et al., 1984)
for discrete covariates and partial correlation for continuous covariates, into
the GAP environment (Wu and Chen, 2007). In this framework, the Pear-
son correlation matrix for variables can be decomposed into the model- and
residual-component matrices. The contribution of the covariate effects can
then be assessed through the relative structure of the model-component to
the original correlation matrix while the residual-component becomes the new
data matrix for further exploration. A z score map is proposed to identify
variable pairs with the most significant differences in correlations before and
after a covariate adjustment.

5.2 Geometric nonlinear association

The aforementioned similarity or dissimilarity measures for quantitative data
quantify only linear relationships between subjects and variables. In many
scientific applications, features may be correlated in a nonlinear manner. The
isometric mapping (isomap) (Tenenbaum et al., 2000) algorithm is developed
to estimate the geodesic distance between all pairs of points in the data man-
ifold. We have implemented the estimation of this geodesic distance in GAP
as iso-distance for extracting potential geodesic nonlinear structures.

Figure 6 shows a Swiss-roll data cloud which consists of 500 expression-38-
colored points. This is a typical data set for studying the nonlinear manifold
problem. The sorted L2-distance and iso-distance matrices sorted by the R2E
seriation are shown in Figure 7 (b) and (d) respectively. As can be seen, the
sorted L2-distance map could not reflect the non-linear structure (Figure 7 (a)
and (b)) while the iso-distance map fully recovered the Swiss-roll non-linear
manifold (Figure 7 (c) and (d)).
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Fig. 6. A nonlinear manifold structure, the Swiss-roll example.

(a) (b) (c) (d)

Proximity

min.                                                  max.

Fig. 7. Matrix visualization of geodesic nonlinear association. (a) The sorted sample
indices in Figure 6 with the corresponding (b) L2-distance matrix for Swiss-roll
data by R2E algorithm. (c) The sorted sample indices with the corresponding (d)
iso-distance matrix by R2E algorithm.

5.3 Array image viewer

Visual inspection of the spotted cDNA microarrays images is the first step in
quality control for statistical analysis of gene expression profiling. The array
image viewer module in GAP offers a pseudo-colour representation of an ar-
ray for displaying array design information (e.g., Block, Column, Row, Dia.,
F635 Mean, B635 Median, F532 Mean, B532 Median, · · ·) stored in gpr file
(GenePix Pro, Molecular Devices Corporation) in the form of the physical
array layout and sample plates location map. This is a special application and
implementation of MV techniques for visualizing cDNA microarrays. The de-
veloped functions enable the users to obtain an instant overview of the design
quality of the experiment and for detecting scratches, artefacts and spatial
patterns of the arrays. It works on multiple gpr files sharing an identical GAL
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Fig. 8. A snapshot of the array image viewer module in GAP.

file.

Figure 8 has a snapshot of the array image viewer with some real array data.
The physical design of the array has 12 by 6 grids with 17 by 17 spots in each
grid. The additional numerical information for locations of spots, the sample
plates the spots came from, and the sample providers/laboratories are stored
and imported. There are 34 plates with the 384-well (16 by 24) layout. Figure
8 shows the “F532 Median” values with the rank matrix condition. This is
helpful in contrasting the relative expression intensities with related design
information. The color map in the left panel is the pseudo-colored array. The
top halves of all grids have systematic higher expression intensities than the
lower halves. In the central grid of the array, a possible scratch (in bright
green) can be easily spotted. The middle panel displays the map of plates
aligned along 384 wells (A1∼A16, · · ·, P1∼P16). The physical plate maps in
the right panel reveal the message that relative higher expression intensities of
the top-halves of the grids are actually associated with the first fourteen plates
which contains only purchased commercial samples. The in-house prepared
sample plates all contain relatively lower expression intensities. More example
array viewer images are available on our web site.
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6 Conclusion and outlook

This paper illustrates the design and features of the GAP environment. GAP
provides simple yet powerful tools for visually exploring and understanding the
structure embedded in high-dimensional data matrices before suitable math-
ematical operations and appropriate statistical modeling can be introduced
for accomplishing a comprehensive data analysis. The users can use the built-
in data sets to learn related GAP modules and techniques. In the past few
years, several scientific studies using GAP as primary analysis, visualization,
and presentation tool have been successfully carried out and published in the
fields of psychiatry (Hwu, et al., 2002), microarray data analysis (Lee, et al.,
2005) and others (e.g., Fielding, 2007).

Computationally, the R2E algorithm is more time consuming than other se-
riation methods. It takes a personal computer (Celeron (R) 3.2 GHz CPU
with 512 MB RAM) running C++ on Windows XP about 0.09 sec, 9.09 sec,
and 2.71 hr to obtain the R2E permutations for proximity matrices with 50,
500, and 5000 rows/columns. The computation complexity for R2E is of order
O(n3). The computing speed is much slower in the current pure Java version
GAP package although we are implementing a much faster algorithm now. We
have also developed a prototype PC cluster system for performing the pro-
posed methods for very large proximity matrices that will be released after it
has been fully tested.

A number of further extensions to the existing version of GAP are under-
way. Modules for matrix visualization of longitudinal data, canonical data,
pure categorical data, data with dependent variable(s), data with dependent
(clustered) structure, and data with cartographical information are some GAP
projects in preparation.

With the capacity for displaying thousands of variables in a single picture, the
flexibility for working with all types of data, and the ability for handling the
various manifestations of extraordinary data patterns (missing values, covari-
ate adjustment), we believe the GAP approach matrix visualization has the
opportunity to become one of the major graphical tools for the new generation
of exploratory data analysis (Tukey, 1977).
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