本實驗室以發展「全矩陣式資料視覺化」技術為主要研究領域。所提出的方法稱為「廣義相關圖」,它是一個非降維的探索式資料分析視覺化方法,主要是將完整資料矩陣 (data matrix) 或關係矩陣 (proximity matrix)內潛藏的資訊有效的呈現出來(如圖)。其步驟包含四個部分:(1)原始資料之呈現與關係矩陣之選擇,(2)關係矩陣與資料矩陣之排序,(3) 對變數與個體進行分群,(4)充分統計圖。
       一般統計分析要處理的資料都是全矩陣視覺化的研究對象,例如目前已發展出類別性資料的全矩陣視覺化、並應用在地圖學上。它雖然不完全是一個新的研究領域,卻存在許多的研究課題與應用技術,本實驗室在此領域的研究成果居世界領先地位。目前正朝向各類型全矩陣視覺化的相關方法論與應用積極開發中。


 

   The development of the techniques for the matrix visualization is the main research area in Chen's lab. The proposed method is called generalized association plot (GAP). It is a dimension-free information visualization environment for exploring the association of subjects/variables embedded in the data. The framework of GAP consists of four components: (1) presentation of raw data matrix and selection of proximity matrices, (2) seriation of proximity matrices and raw matrix, (3) partitions of permuted matrix maps, and (4) sufficient statistical graph.

   Most of the data for statistical analysis are the object for matrix visualization. For example, we have developed a matrix visualization approach for categorical data, and have applied it on cartographic display. Although the matrix visualization is not a new research area, it still has many research topics and technical applications. By now, the research achievement in Chen’s lab has reached the world’s leading position. Currently, we are developing new methods for various types of data and looking for the new applications actively.
 

 

 



Chen's Birthday 2006!

 

2005/07/01 迎新送舊 [picture 2]

 

2004/08/12 Lab Meeting

 

Chen's Birthday 2003!